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We present a theoretical approach to determine the electronic properties of nanoscale systems exhibiting
strong electron-electron and electron-phonon interactions and coupled to metallic electrodes. This approach is
based on an interpolative ansatz for the electronic self-energy which becomes exact both in the limit of weak
and strong coupling to the electrodes. The method provides a generalization of previous interpolative schemes
which have been applied to the purely electronic case extensively. As a test case we consider the single level
Anderson-Holstein model. The results obtained with the interpolative ansatz are in good agreement with
existing data from numerical renormalization group calculations. We also check our results by considering the
case of the electrodes represented by a few discrete levels which can be diagonalized exactly. The approxima-
tion describes properly the transition from the Kondo regime where electron-electron interactions dominate to
the polaronic case characterized by a strong electron-phonon interaction.
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I. INTRODUCTION

While Kondo physics due to electron-electron interactions
has received long-standing attention,1,2 the electron-phonon
interaction and its interplay with electron-electron correla-
tion effects have only attracted more recently the interest of
researchers in the field of nanoscience.3 This is probably due
to the important role played by both electron-electron and
electron-phonon interactions in the transport properties of
small molecules.4–6 In this respect, the Anderson-Holstein
�AH� model,7–11 including these correlations in a local way,
is a paradigmatic simple model to study the physics of these
systems.

Several theoretical methods have been successfully devel-
oped for describing Kondo correlations in the single level
Anderson model such as the numerical renormalization
group �NRG�,12,13 quantum Monte Carlo �QMC�,14 Bethe
ansatz,15 or perturbative methods.16,17 However, the exten-
sion of these methods to deal with both electron-electron and
electron-phonon interactions has certain limitations. We
mention here the NRG �Refs. 18–21� and QMC methods22

that have been recently applied to the Anderson-Holstein
Hamiltonian: in the NRG approach it is difficult to reach the
strong polaronic regime in which the electronic density spec-
trum develops a very rich structure of phonon induced peaks
over a broad range of energy; in the QMC approach, it is also
difficult to resolve these features due to the limitation of
using a minimum temperature in the calculations. On the
other hand it would be extremely demanding from a compu-
tational point of view to implement these numerically exact
methods in more complex models describing realistically
systems such as molecules or quantum dots �QD� coupled to
electrodes.

These limitations suggest the convenience of looking for
other alternative methods that would yield approximate but
sufficiently accurate solutions for these kinds of systems for
a broad range of parameters. In the case of purely electronic
models an approach that has proved to be very useful is the
interpolative self-energy method.23–27 This approach is based

in the analysis of the properties of the exact self-energy in
the weak �perturbative� and strong coupling limits which al-
lows one to define an approximate and simple self-energy
interpolating appropriately between the two limits. This
scheme, originally derived for the equilibrium Anderson
model, has been generalized and extensively used in differ-
ent contexts: multilevel QDs,28 out of equilibrium transport
through a single level29,30 and in combination with dynami-
cal mean-field theory �DMFT�,25,26 to analyze the Mott tran-
sition in Hubbard-type models. Its potential to be extended to
more complex situations makes this approach particularly
useful. The aim of this work is to present a generalization of
this interpolative approach to deal with both electron-phonon
and electron-electron interactions simultaneously.

In order to introduce the method we will consider in this
paper the Anderson-Holstein model which includes both
types of interactions. We first discuss the spinless case which
is instructive as it will allow us to illustrate how the interpo-
lative arguments also work for the purely electron-phonon
interaction case. This case will be analyzed in Sec. II. The
extension to the case where both interactions are present will
be addressed in Sec. III. In both cases the accuracy of the
method is tested by comparing the results for the spectral
density with exact numerical results for finite systems and
with existing NRG calculations in the literature. Finally, in
Sec. IV we present a discussion and the conclusions of our
work.

II. INTERPOLATIVE SELF-ENERGY FOR THE SPINLESS
ANDERSON-HOLSTEIN MODEL

We consider first the simple spinless Anderson-Holstein
Hamiltonian describing a single nondegenerate electronic
level �0 coupled linearly to a local phonon mode of fre-
quency �0 and to an electronic reservoir represented by a
continuum of states of energy �k�,
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Ĥ = �
k�

�k�ĉk�
†ĉk� + �0ĉ†ĉ + �0b̂†b̂ + ��b̂† + b̂�n̂

+ �
k�

�Vk�ĉk�
†ĉ + c.c.� , �1�

where Vk� is the matrix element between the reservoir states
and the localized level, n̂ is the level occupation operator,
and � is the electron-phonon coupling parameter. It should
be noticed that in spite of being simpler than the spin-
dependent case, this model does not have an exact solution
for an arbitrary level occupancy. Only in the limit of a com-
pletely empty �or full� level an exact solution is available.9

As in the purely electronic case23,24 the interpolative ap-
proach will be based on a special property of the electronic
self-energy which exhibits the same mathematical form
when expanded in the interaction parameter both in the
atomic �Vk→0� and in the perturbative limit �which in this
case corresponds to �→0�.

We first consider the atomic limit, Vk�→0. In this case Eq.
�1� can be diagonalized by means of a canonical transforma-
tion �see Refs. 31 and 32�. The electron Green’s function can
then be straightforwardly obtained:

G�at���� = e−�2/�0
2 �
m=0

�
�2m

�0
2mm!

� 1 − �n̂�
� − �̃0 − m�0

+
�n̂�

� − �̃0 + m�0
� ,

�2�

where �̃0=�0−�2 /�0 and �n̂� is the level occupation.
This expression can also be written as a continuous frac-

tion which can be useful for computational purposes:

G�at���� =
1 − �n̂�

� − �̃0 +
�2

�0
−

�2

� − �̃0 + �2/�0 − �0 − ¯

+
�n̂�

� − �̃0 −
�2

�0
−

�2

� − �̃0 − �2/�0 + �0 − ¯

.

�3�

The electronic self-energy in the atomic limit can now be
obtained from the Dyson equation ��at�=�−�H−G�at�−1,
where �H=�0−2��2 /�0��n� is the energy level corrected by a
constant term which can be identified as the Hartree contri-
bution. In the limit of small coupling � /�0�1, and up to
order �2, this expression tends to

��at���� � �2� 1 − �n̂�
� − �0 − �0

+
�n̂�

� − �0 + �0
� . �4�

On the other hand, the self-energy of the model can be
calculated also up to order �2 by means of perturbation
theory in the electron-phonon interaction. The two diagrams
contributing to order �2 are depicted in Figs. 1�a� and 1�b�.
Diagram �a� gives simply the constant Hartree contribution
−2��2 /�0��n�0, where �n�0 is the unperturbed level occupa-
tion for an effective level, �eff, which will be fixed by an
appropriate self-consistency condition as commented below.

The correlated part of the self-energy to order �2 is then
given by the diagram of Fig. 1�b� and has the expression

��2���� = �2�	
�

�

d�
	�0����

� − � − �0 + i


+ 	
−�

�

d�
	�0����

� − � + �0 + i
� , �5�

where 	�0����=� / 
��−�eff�2+�2� /� is the level density of
states �DOS� of the one-electron unperturbed case, �
=��k�Vk�2��−�k�, which is taken as constant and � is the
reservoir chemical potential.

In the limit �→0 the above expression tends to

��2���� → �2� 1 − �n̂�0

� − �eff − �0
+

�n̂�0

� − �eff + �0
�  F��� .

�6�

By comparing Eqs. �4� and �6� one can notice that the
exact atomic self-energy up to order �2 and the second-order
self-energy in the limit �→0 have the same functional de-
pendence on the occupations and frequency, as was the case
in the purely electronic case. Therefore it is possible to find
an interpolation following the lines discussed in Refs. 23 and
24, the only difference being the more complex expression
for the atomic self-energy due to the multiphonon satellite
structure. The interpolative self-energy is defined by the fol-
lowing ansatz:

���� = ��at��F−1
��2������ , �7�

where F−1 is the inverse function defined by Eq. �6�. It is
straightforward to check that this ansatz interpolates cor-
rectly between the weak and strong coupling limits. The
atomic limit is recovered because in the limit � /�→0,
F−1
��2�����→�. On the other hand, in the limit of small
electron-phonon coupling, ��at��F−1
��2������→��2����, and
the results of perturbation theory are recovered. From Eq.
�6�, we can straightforwardly calculate F−1
��2���������,

λ λ

λ

λ

(a) (b)

λσ(−σ)λσ
(c)

λ

λ

(b)

Uσ −σ

λσ

λσ

(d)

(e)

U

U
σ

σ

(f)

−σ

−σ

FIG. 1. Lower order diagrams contributing to the proper self-
energy. Diagrams �a� and �b� correspond to the spinless case, dia-
grams �c�–�f� to the spin-dependent Anderson-Holstein model.
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which is given by the roots of a quadratic equation:

���� = �eff +
�2

2��2�

��1 +�1 +
4�0��2�

�2 �1 − 2�n�0� + �2�0��2�

�2 �2� ,

�8�

where the + sign in front of the square root has been chosen
to yield ���→ ���=�; this guarantees the recovery of the
atomic limit for ���� if � /�→0. Moreover, we have
checked that Eq. �8� defines an analytical function of � with
poles in the positive complex half-plane: this is a necessary
condition to have a self-energy with the correct analytical
properties.

We now discuss how to determine �eff by imposing an
appropriate self-consistency condition. Several procedures
have been proposed in the literature: the simplest one is to
impose charge consistency23,24,29 between the one-electron
and interacting problems, �n�= �n�0. As discussed in Ref. 29
this procedure only fulfills the Friedel sum rule in an ap-
proximate way although the agreement is rather good for a
broad range of parameters. An alternative possibility is to fix
the effective one-electron level by imposing the fulfillment
of the Friedel sum rule.25 The self-consistency condition is
then given by the equation

�n� =
1

2
−

1

�
arctan� �H + ��0�

�
� , �9�

where the occupation �n� is calculated from the interacting
retarded propagator Gr���= 
�−�H−�����−1:

�n� = −
1

�
	

−�

�

d� Im Gr��� . �10�

This last condition seems to give a better description of the
density of states around the Fermi level, especially in cases
with a large electron-hole asymmetry.

This interpolative ansatz reproduces very accurately both
the limit of weak and strong coupling regimes while giving a
good quantitative description in the intermediate range. In
order to check this approximation we first compare its pre-
dictions for a discrete version of the spinless Anderson-
Holstein Hamiltonian in which the electrode is replaced by a
three-site tight-binding chain which can be numerically di-
agonalized. This is a useful model which allows a detailed
comparison with exact results between the weak and strong
coupling regimes. For a given value of the electron-phonon
coupling �, the configuration Hilbert space is truncated in the
number of phonon modes in such a way that convergence in
the level spectral density is achieved.

In Fig. 2 we compare the level spectral density, 	0���
=−Im Gr��� /�, obtained from the numerical diagonalization
with the approximate solution given by the interpolative self-
energy for a case with electron-hole �e-h� symmetry. As
shown in the figure, the interpolative approximation yields in
all the cases an excellent approximation to the exact DOS.
Notice that the range of parameters goes from the weak cou-

pling limit ��=0.6� to the intermediate ��=1� and the strong
coupling case ��=1.4�. For lower and higher values of �
both spectra are practically indistinguishable.

Results for the continuous model corresponding to Hamil-
tonian Eq. �1� are shown in Fig. 3. As in Fig. 2 the three
cases go from the weak to the strong coupling limit showing
the interpolative solution and the results provided by second-
order perturbation theory in the self-energy. It is interesting
to realize that our interpolative solution is a fair approxima-
tion of the second-order perturbation theory for small �;
however, for the intermediate or the strong coupling limit,
our solution develops the typical structure of the mul-
tiphonon excitation spectrum which is more clearly seen at
high �. In addition to this multiphonon features, the DOS
exhibits a narrowing resonance at the Fermi level when ap-
proaching the strong coupling limit. It is straightforward to
calculate the weight of this resonance from the value of the
self-energy at the Fermi level, giving an exponential decay-
ing law�exp�−�2 /�0

2�.
For the sake of completeness we show in Figs. 4 and 5

results for the level DOS for an electron-hole asymmetric

FIG. 2. �Color online� Localized level spectral density for a
discrete spinless Anderson-Holstein model with an electrode con-
sisting of a three atom tight-binding chain for different values of the
electron-phonon coupling parameter � with �0=1. From upper to
lower panel, �=0.6,1 ,1.4. The �blue� continuous line corresponds
to the interpolative solution while the �black� dotted one to the
numerical diagonalization results. The diagonal energy levels in the
chain are taken as zero and the first-neighbor hopping parameter is
fixed at t=1. The hopping parameter between the dot level and the
chain is V=0.5 and the level position is the one corresponding to an
e-h symmetric case. A small imaginary part, 
=0.05, is included in
both spectral densities to facilitate the comparison.
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case. In Fig. 4 we compare our interpolative solution with
exact diagonalization results for the same discrete model
used in Fig. 2. Notice the excellent agreement between both
solutions which correspond to a level occupancy �ndiag�
��n�=0.83. In Fig. 5 we show the local DOS for the full
continuous asymmetric model for a case with a level occu-
pancy �n�=0.82 �see caption for details�. Notice how the
noninteracting resonance �blue dashed line� having a
Lorentzian-type shape around �̃0 is changed into a density of
states showing a satellite structure associated with phonons.

As a final remark, we would like to point out that the
interpolative ansatz recovers the exact solution in the limit of
a fully empty or fully occupied level. In this case ���
+ i� and the exact propagator in this limit, G���=G�at���
+ i��, is recovered.9

III. SPIN DEGENERATE ANDERSON-HOLSTEIN
HAMILTONIAN

In this section we will show how this interpolative
scheme can be extended to the presence of both electron-
electron and electron-phonon interactions, by considering the
spin degenerate Anderson-Holstein Hamiltonian:

Ĥ = �
k��

�k�n̂k� + �0�
�

ĉ�
† ĉ� + Un̂↑n̂↓ + �0b̂†b̂ + ��b̂† + b̂��

�

n̂�

+ �
k��

�Vk�ĉk��
† ĉ� + c.c.� , �11�

where U is the Coulomb interaction in the localized level.

The atomic Green’s function can also be obtained from a
canonical transformation of this Hamiltonian in the limit Vk
→0 giving a renormalization of both the level position �̃0

=�0−�2 /�0, and the Coulomb interaction Ũ=U−2�2 /�0. As
a function of these parameters the atomic Green’s function
takes the form18

G�
�at���� = e−�2/�0

2 �
m=0

�
�2m

�0
2mm!� ��1 − n̂���1 − n̂�̄��

� − �̃0 − m�0

+
��1 − n̂��n̂�̄�

� − �̃0 − Ũ − m�0

+
�n̂��1 − n̂�̄��

� − �̃0 + m�0

+
�n̂�n̂�̄�

� − �̃0 − Ũ + m�0

� . �12�

FIG. 3. �Color online� Localized level spectral density for the
continuous spinless Anderson-Holstein model for different values of
the electron-phonon coupling parameter for an e-h symmetric case
with �=0.25 and �0=1 �from upper to lower panel, �=0.3,1 ,1.4�.
The �blue� continuous line corresponds to the interpolative solution
and the �black� dotted line in the upper panel to the second-order
self-energy approximation.

FIG. 4. �Color online� Localized level spectral density for a
discrete spinless Anderson-Holstein model with an electrode con-
sisting of a three-atom tight-binding chain for an asymmetric
electron-hole case. The �blue� continuous line corresponds to the
interpolative solution while the �black� dotted one to the numerical
diagonalization results. The renormalized level position is �̃0=
−0.2 with �=1 and �0=1. The diagonal energy levels in the chain
are taken as zero and the first-neighbor hopping parameter in the
chain is fixed at t=1. The hopping parameter between the dot level
and the chain is V=0.25. A small imaginary part, 
=0.05, is in-
cluded in both spectral densities to facilitate the comparison.

FIG. 5. �Color online� Localized level spectral density for the
continuous spinless Anderson-Holstein model for an electron-hole
asymmetric case. The parameter values are �=1, �=0.25, �0=1,
and �̃0=−0.25. The �blue� continuous line corresponds to the inter-
polative solution and the �black� dashed line to the noninteracting
case with �0= �̃0.
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For computational purposes, this expression can also be writ-
ten in a continuous fraction form. Following an analogous
procedure to the one used in the spinless case, the atomic
self-energy can be calculated from the above Green’s func-
tion as ��at�=�−�H�−G�at�−1 where the Hartree level has in
this case the expression

�H� = �0 −
2�2

�0
�
�

�n̂�� + U�n̂�̄� . �13�

Expanding now the correlated part of the atomic self-energy
up to order �2 and U2 we obtain the equation

��
�at���� � �2� 1 − �n̂��

� − �0 − �0
+

�n̂��
� − �0 + �0

�
+ U2

�n̂�̄��1 − �n̂�̄��

� − �0
. �14�

On the other hand, the self-energy calculated by means of the
lowest order diagrams 
see Figs. 1�d� and 1�f�� has the fol-
lowing expression in the �→0 limit 
up to the Hartree con-
stant contribution given by diagrams �c� and �e��:

��
�2���� → �2� 1 − �n̂��0

� − �eff − �0
+

�n̂��0

� − �eff + �0
�

+ U2
�n̂�̄�0�1 − �n̂�̄�0�

� − �eff
 F���� . �15�

Notice that when both electron-electron and electron-
phonon interactions are present, both equations have still the
same functional dependence. Thus one can introduce an in-
terpolative self-energy using the same approach developed
for the spinless case; in particular we define the self-energy
by the ansatz

����� = ��
�at��F�

−1
��
�2������ , �16�

F�
−1 being the inverse function defined by Eq. �15�. These

equations define the interpolative self-energy we are looking
for, yielding the appropriate behavior for small values of �
and U, and in the atomic limit, when Vk→0. An important
difference with the spinless case appears because the atomic
self-energy for the Anderson-Holstein Hamiltonian depends
on the correlation function �n̂�n̂�̄� which has to be calculated
in a self-consistent way. This is discussed in the Appendix.

In order to obtain F�
−1
��

�2���������� from Eq. �15� it is
now necessary to solve the following cubic equation:

�̃���̃�
2 − �0

2���
�2� = �2�̃�
�̃� + �1 − 2�n��0��0�

+ U2�n�̄�0�1 − �n�̄�0���̃�
2 − �0

2� ,

�17�

where �̃�=��−�eff. This equation has two clear limiting

cases. In the limit Ũ�0 and U��, the solution of Eq. �17�
tends to

����� = �eff +
U2�n�̄�0�1 − �n�̄�0�

��
�2����

, �18�

which corresponds to the purely electronic case in the ab-
sence of electron-phonon interaction �see Refs. 23–25�. On

the other hand, in the opposite limit, Ũ�0 and U��, Eq.
�17� reduces to a quadratic equation like the one in the spin-
less case and with a similar solution 
Eq. �8�� which would
correspond to the strong polaronic limit:

��̃�
2 − �0

2���
�2� = �2
�̃� + �1 − 2�n��0��0� . �19�

Solving the full cubic equation requires choosing the root
that has the correct physical behavior. As in the spinless case
this can be achieved by starting from the solution that be-
haves as ���→ ����� and imposing continuity for all
frequencies. This solution exhibits a transition from a regime

with Ũ�0 in which ����� qualitatively behaves like the one

in the electronic case to a regime for Ũ�0 in which �����
rather behaves like the one corresponding to the quadratic
equation of the polaronic limit. The transition takes place

around Ũ�0; its precise value as a function of �, U, and �
can be calculated by a careful analysis of the analytical prop-
erties of the roots of Eq. �17�. We have furthermore checked

that in the polaronic regime �Ũ�0�, the solutions of Eq. �17�
are well described by the roots of the much more simple
quadratic equation

��̃�
2 − �0

2���
�2� = �2
�̃� + �1 − 2�n��0��0�

+ U2�n�̄�0�1 − �n�̄�0��̃�, �20�

which is obtained by neglecting in Eq. �17� the term
−U2�n�̄�0�1− �n�̄�0��0

2. It is easy to check that both limits
�0→0 and � /U→� are recovered by this simpler equation.

In order to test the interpolative solution presented in this
section we first compare its predictions with the results of
exact numerical diagonalizations for a finite system. As the
Hilbert space in the case where both electron-electron and
electron-phonon interactions are present is much larger than
in the spinless case we take a minimum cluster in which the
electrode is replaced by a single discrete level. In Fig. 6 we
represent the evolution of the level DOS for increasing val-
ues of the electron-phonon coupling parameter �. It is inter-
esting to notice that in spite of the simplicity of this discrete
model the local DOS exhibits as a function of � a transition
from a regime where Coulomb correlations dominate �Kondo
regime, see upper panel� to a strong polaronic regime where
the effective electron-electron interaction becomes negative
and is characterized by a gap in the quasiparticle spectrum
and the appearance of well defined multiphonon satellites
�see lower panel�. As can be observed the interpolative solu-
tion is very close to the exact diagonalization results
throughout these regimes.

In Fig. 7 we show our calculations for the localized level
spectral density for the full Anderson-Holstein Hamiltonian
of Eq. �11�. The parameter values have been chosen to allow
comparison with NRG results for an electron-hole symmetric
case18,19 and illustrate the transition from the Kondo to the
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strong polaronic regime. For �=0 we find the typical spec-
trum with a Kondo resonance at the Fermi level, in good
agreement with Ref. 18. When increasing �, the effective

Coulomb repulsion Ũ decreases and the Fermi-level reso-
nance slightly broadens while the first phonon subbands ap-

pear �see curve for �=0.03 and Ũ=0.064 in the figure�. For

larger values of �, Ũ becomes negative, the Fermi-level reso-
nance eventually collapses, and the system experiments a
transition to a polaronic regime with an energy gap in the
spectral density. Strictly speaking, the Friedel sum rule is

still satisfied, with a deltalike peak at the Fermi energy which
at the scale of the figure cannot be resolved. These results are
in good agreement with those of NRG calculations.18,19

The results presented so far in this section have concen-
trated in the case of electron-hole symmetry. The interpola-
tive ansatz is, however, valid as in the spinless case for a
general asymmetric situation. In the extreme limit of a fully
empty or fully occupied level, the model becomes in fact
equivalent to a spinless case as is evident comparing Eq. �12�
with Eq. �2� for �n̂��=0, ��n̂�n̂�̄�=0� or �n̂��=1, ��n̂�n̂�̄�
=1�. Therefore the ansatz tends also to the exact solution in
that limit.

IV. CONCLUSIONS

We have presented an interpolative approach for calculat-
ing the electronic properties in a nanoscale system coupled to
metallic electrodes and exhibiting both electron-electron and
electron-phonon interactions taking the Anderson-Holstein
model as a test case. This approach provides a generalization
of the interpolative self-energy method23–25 which has been
applied successfully to many different problems.25,26,28–30

In a first step we have considered the spinless Anderson-
Holstein model and discussed in detail for this case how the
interpolative argument can be extended to deal with electron-
phonon interactions. We have checked the accuracy of the
approximation by applying the method to the case in which
the electrode is represented by a finite chain of three discrete
levels which can be solved exactly by numerical diagonal-
ization. In particular we have found that the method gives a
very good description of the spectral density at low energies.
In the continuous case the method describes correctly the
exponential decay of the width of the Fermi-level resonance
with increasing electron-phonon coupling.

In a second step we have analyzed the full spin-dependent
Anderson-Holstein model and discussed how to generalize
the interpolative self-energy for this case. This scheme natu-
rally recovers the results of the purely electronic interpola-
tion method for vanishing electron-phonon coupling. The ac-
curacy of the method for this case is checked both for a
discrete electrode model and by comparison with existing
NRG results for the continuous model.18,19

We conclude that the interpolative technique is very reli-
able and provides a powerful tool to explore the role of
strong electron-phonon interactions in more general situa-
tions of current experimental interest such as electronic
transport through single molecules. Work along these lines is
under progress.
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APPENDIX

For a purely electronic case the correlation function
�n̂↑n̂↓� can be calculated from the one-electron Green’s func-

FIG. 6. �Color online� Localized level spectral density for a
discrete Anderson-Holstein model with the electrode simulated by a
single discrete level �taken as the zero of energy� for different val-
ues of the electron-phonon coupling � with �0=1. From upper to
lower panel, �=0.9,2.6. The �blue� continuous line corresponds to
the interpolative solution while the �black� dotted one to the nu-
merical diagonalization results. The hopping parameter between the
dot level and the chain is V=0.25 and the dot level position is the
one corresponding to an e-h symmetric case. A small imaginary
part, 
=0.1, is included in both spectral densities to facilitate the
comparison. The Coulomb interaction parameter is U=8.

FIG. 7. Localized level spectral density of the continuous
Anderson-Holstein model for a fixed value of the Coulomb interac-
tion U and for different values of the electron-phonon coupling
constant. The magnitude of the parameters has been chosen as to
allow a comparison with existing NRG calculations. �=0.0159,
�0=0.05, U=0.1, and �=0,0.03,0.07,0.09 �corresponding, respec-
tively to continuous, dashed, dotted, and dash-dotted lines�. The
level position corresponds to an electron-hole symmetric case.
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tion of the localized level.28 A similar procedure for the
Anderson-Holstein model yields the following equation:

U�n̂�n̂�̄� + ��n̂��b̂† + b̂�� =
1

2�i
� d������G���� ,

�A1�

where the propagators are assumed to be causal and the con-
tour integration is on the upper complex plane.

This equation could be used to calculate �n̂�n̂�̄� if the

averaged value �n̂��b̂†+ b̂�� can be obtained independently.
This can be provided by the equation of motion of the pho-
non propagator,

D��� = D�0���� + �D�0�������
�

n̂�; b̂† + b̂��
�

,

where the Green’s function appearing on the right-hand side

can be used to calculate the average �n̂��b̂†+ b̂��. From the
equation of motion of this last Green’s function we have18

���
�

n̂�; b̂† + b̂��
�

= �D�0�������
�

n̂�;�
�

n̂���
�

.

�A2�

The average value ���n̂��b̂†+ b̂�� can be calculated by in-
tegrating the above equation:

��
�

n̂��b̂† + b̂�� = �� d�

2�i
D�0�����Q��� , �A3�

where �Q��� is the charge susceptibility appearing in Eq.
�A2�.

An interpolative argument can also be used to calculate
�Q���. First, we consider the atomic limit ��→0� and use
the canonical transformation that diagonalizes the Anderson-
Holstein Hamiltonian in this case. We obtain

�Q
�at���� = − 2�i�

�


�n̂�� + �n̂�n̂�̄����� . �A4�

On the other hand, in the limit � ,U→0 we can evaluate
this charge susceptibility function using Wick’s theorem:

�Q
�Wick���� = − 2�i�

�


�n̂��2 + �n̂���n̂�̄����� + �
�

��
�0���� ,

�A5�

where ��
�0���� is the lowest order polarization bubble. In the

limit �→0, ��
�0����→−2�i�n̂���1− �n̂������ and Eq. �A5�

tends to

�Q
�Wick���� = − 2�i�

�


�n̂�� + �n̂���n̂�̄����� . �A6�

Due to these properties, the function

�Q��� = − 2�i�
�


�n̂��2 + �n̂�n̂�̄����� + �
�

�����

�A7�

interpolates correctly between both limits, ����� being the
full polarization bubble. We have checked that a simple ef-
fective mass approximation in which ����� is calculated by

����� =	 d�G�
eff���G�

eff�− ��e−i��, �A8�

where G�
eff is a renormalized propagator with Veff=V / �1

−����� /���1/2, gives a good estimation of �n̂�n̂�̄� for a
broad range of parameters. As an additional check �n̂�n̂�̄� has
been obtained by means of cluster calculations with a good
agreement with the above approximation.
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